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EQUILIBRIUM OF CAVITIES AND CRACKS-SLITS WITH OVERLAP AND 
OPENING DOMAINS IN AN ELASTIC MEDIUM* 

R.V. GOL'DSHTEIN and YU.V. ZHITNIKOV 

A class of three-dimensional problems in elasticity theory on the 

equilibrium of cracks-slits and cafvities (later also called cracks with 

an initial opening) is examined on the assumption that their surfaces 

can be superimposed on each other under the action of a system of volume 

forces. The boundaries of the overlap domains are not known in advance. 

The qualitative and extremal properties of the solutions that enable 

a correspondence to be established between solutions of problems for 

variations of the cavity domain and its initial opening (or the shape 

of the crack-slit) and, the external loads, in which enable the solutions 

of problems of the class under consideration and problems on the contact 

of two half-spaces to be compared are studied. A uniqueness theorem is 

formulated. 

Proofs of all the assertions are obtained within the framework of a 

single approach by using asymptotic forms of the solutions near the 

boundaries of the overlap zones and congruence theorems /l/ (reflecting 

the property of positivityofthe solutions of the problem under 

consideration). In this connection the asymptotic behaviour of the 

solution is first analysed in the neighbourhood of the overlap and 

opening zone boundaries of the cavity (crack-slit) surfaces. A class of 

functions that describes the initial cavity opening for which the solution 

near the boundaries of these domains is not singular is investigated. 

It is shown that the method of seeking the unkown overlap domain 

boundaries from the condition of no singularity while taking account of 

the proved assertions is equivalent to the method based on minimizing 

the elastic energy functional with constraints in the form of 
inequalities /2/. 

The variational approach was applied to the investigation of spatial 

problems on cracks-slits with overlap domains /2/ and to the solution of 

problems of cavities /3/. The overlap domain boundaries as boundaries 

where the solution is not singular are constructed in the special case 

of the axisymmetric problem of a crack-slit in a layer /4/ and a cavity 

/5, 6/. 

1. We consider the equilibrium of a linearly elastic isotropic space with a cavity whose 

section in the plane ZQ = 0 occupies a domain 0. The distance between the cavity surfaces 

u (511 x2) is here a single-valued function of (I,1 2:) and is small compared with the 

dimensions of 0 (a compressed cavity). 

We will consider the conditions on the cavity surfaces in the 53 = 0 plane. We will 

assume that the overlap domain is formed in the plane Q under the effect of a system of 

volume forces that are symmetric about the plane z3 = 0. The boundary conditions in the z3 = 0 
plane have the form 

where F is the overlap domain of the cavity surfaces. Outside the domain R the external 

loads are given by a distribution of volume forces with density p (z,,z,,r,).If u (21, I?) = 0, 
then the cavity is converted into a crack-slit 
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It is convenient to transfer from the system of external loads to the boundary conditions 

in the x,=C, plane when solving the boundary value problem (l-l), (1.2). To do this, we find 

the stress distribution in a continuous body in the domain 9: -c3~0(xl,x2), by assuming that the 

corresponding elasticity theory problem for a body without a cavity is solved. Then, we 

append the stress -c330(x1,x2) with opposite sign /2/ to the boundary conditions for the stresses 

in the domain Q. After carrying out this procedure, the boundary conditions (1.1) take the 

fOiTlTl 

~33f = 033” (11, x2), (.qr 52) E Q \ F (1.3) 

c33* < US' (x1, z,), (~1, 12) c F 

Later, by analogy with the boundary value problem (1.11, (1.2), we retain the designation 

"free surface" outside the domain R \ P, and denote it by D. 

2. We will examine the boundaq value problem (1.2), (1.3). We set up the criterion 

governing the position of the overlap and opening domain boundaries. To do this, we will 

analyse the behaviour of the solution in the neighbourhood of the boundary as a function of 

the geometry of the initial opening u (XI, 12). 
We introduce a local XYZ coordinate system (the Z axis is directed along the tangent 

to the free surface boundary Q \ F, the Y axis is normal to the plane x3 = 0; x < 0 
corresponds to the domain 53 ‘1 F). Then by virtue of (1.2), (1.3), we have for z = 0 

uy+ - uy - = --u (x), 5 > 0; a,,* (x, 0) = B (z), z < 0, (2.1) 

y-+&O 

where c(z) is determined by the external stress, and u(z) is the given jump in the displacement. 

We assume that the functions U(Z), o(x) satisfy the Holder condition /7/, and are analytic 

in the neighbourhood of the point z = 0. By virtue of symmetry uz,,+ = urxf = 0, 15 I< 53, y = 0. 
The state of stress in the case of plane strain is described by the Kolosov-Muskhelishvili 

formulas /8, 9/ in the local coordinate system (11 is the shear modulus) 

Substituting 

problem /9/: 

Consider the 

-.I+-, 5 \: 0, y = 0. 

The solution 

OXI + $?/ = 2 [(ID (I]) + o* (q)], 1, = z + iy (2.2) 

%Y -cc,y =(o(l])+n(rl*).--(‘l-_?*)(I)‘*(~) 
2bL(U, + iu,') =x D(q) - !I (q*) - (I] - @)(iP (‘1) 
ua’ = &L&X, a = z, y; IL = Ei2 (1 + Y), x = 3 - 4v 

the representations (2.2) into (2.1), we arrive at the following conjugate 

0,' - 0- = igo' (z), z > 0; CD+ + @- = u (z), z 6 0 (2.3) 

go' == 2y (a,' - a,-).'(x :- 1) = -2q (z)/(x + 1) = dg,/dx 

canonical solution of problem (2.3): to = qv~ for which zoc = JO-, z> 0, ZO+= 

of the boundary value problem (2.3) in the class of functions bounded at 
infinity and unbounded at the point q = 0 has the form /7/ 

(B is a constant determined from the conditions at infinity). 

Consider the functions w(q) = o(q) zo (r), XI (11) = Qo’ (W x1 (rl) where x1 (q) = I]“‘, 1/F= & 

1/z x>o, Y - t0 for the estimates Ar(n), .11,(n). A slit is drawn along the positive 
semi-axis in the XY plane. We obtain (M- 1~')~ = (Al - w)- and (M, - ~1.~)~ = (Al, - lul)- as 

.V-) f0. Therefore, the functions N(n)- ~(11) and M,(q) - wl(q) are analytic in the 
neighbourhood ofthepoint q = 0; M(n) - u%(I~)+ M, (n)- WI(q) is an analytic function. 

We therefore have near the point n = 0 

(2.4) 

The stress and displacement distribution along the z axis in the neighbourhood of the 
point x = 0 takes the following form after substituting (2.4) into (2.2). 
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‘3,,+ (x, 0) = 0 (x), x < 0 

‘Jf (X, 0) = 0 (2) + ‘/zx-‘lzA1 .f . . . + (n - l/a) x”-‘IzA,,, x > 0 

fJ’,B (x7 0) d 0, 5 > 0; uy (I, 0) = -u (x), x > 0 

uy (z, 0) = - IL (5) -1 2 (1 -Y) p-1 y/2.-1* f . . . 
+ (- 1))’ 1 rn-“.A,), x d 0, r=lxl 

(2.5) 

It follows from (2.5) that the displacement and stress distributions along the x axis 

are related by means of the coefficients Al;. 

We will analyse the stress and displacement distribution near the contact domain boundary. 

We will assume the equation of the cavity surface at x<O to have the form Us= Ix /“F,(I)+ 
8, Fr> (4 is a polynomial of degree p, O<a<l, i.e., a surface that is generally piecewise 
continuous at the point 5 = 0. 

For x60 the cavity surfaces do not overlap, and consequently, the jump uy (x) in the 
displacement should be less in absolute value than the distance between them 

Hence and from (2.5) it follows that if p> 1, then to satisfy (2.6) taking into account 

the fact that cm, < 0 in the contact domain z> 0, it is necessary that A, =0 and A,< 0. 
If p=o, then for '/Z<~< 1 it is necessary that A, = 0 to satisfy (2.6) while A,#0 
and A,< 0 are necessary for 0 < a < I/? . . In this case the stresses in the contact domain 
are compressive and singular. 

As follows from the asymptotic form obtained, when p> 1 and !, = 0, 'I, < a < 1 the 
cavity surfaces interlocksmoothlybecuase of compression even when there are irregular points 

on an arbitary section of the surfaces. For p = 0. 0 < a ( I/* the compressive stresses near 

the breakpoint in the contact domain are singular, and complete closure of the surface is 
impossible for any finite d,. Therefore, sections of the cavity surfaces can be indicated 

prior to the solution of the problem, which will not come into contact. If u (x)=0 for 

d> 0, then the asymptotic form constructed is the asymptotic form of the solution near an 

angle formed by surfaces with the equations u(x)= lx 1” F,,(x), x< 0 in a continuous material 

(the axis x> 0 is directed into the material). 

The dependences on the parameters a,p obtained for the conditions of contact domain 

origination correspond to the results of numerical computations for cavities of elliptical 

planform /3/: for the initial opening of the cavity (u(z~,z~)= b(l - zl?.lG -~$lb*)~'~) the contact 

domain abuts on the cavity boundary if a>l and appears within the domain formed by a 

section through the cavity by the plane z3= (1 if O<CZ<l. 
Consider the case when the distance u(xr, x2) between the cavity surfaces is a smooth 

function. Then to satisfy conditions (2.6) (there is an opening between the cavity surfaces) 

it is necessary that A, >0 for A,# 0 and /I?< 0 for A, = 0. For A, # 0. a,,* (x, 0) > 0 

according to (2.5), but this means that the cavity edges should be attracted into the con- 

tinuity domain .z > 0. If LX>0 is the contact domain, i.e., cl,!,+ (z, 0) < 0, then A, = 0 
is necessary andthestress distribution is not singular in the neighbourhood of the overlap 

domain boundary while the cavity surfaces interlock smoothly. A similar analysis is carried 

out for cracks-slits. In this case, it also follows from the conditions u,,(z,O)> 0, r:, 0 

that A,>0 for A,#0 while we have A?KZ;O for ..ll, = 0. According to (2.51, the asymptotic 

form for A, # 0 corresponds to the condition cyo(5, 0) -0, i.e., the crack edges should be 

attracted. Imposing the condition u,!,,(s,O)< 0 in the contact domain .z > 0, we have :I 2 -: : 0 
with the necessity that A, ~= 0. 

For the domain R in the boundary value problem (l.l), (1.2) in the case when u(x1,x2) = 

O,(x,,rc,)~ Q,the boundary conditions in the free surface domain R \, F agree with the bound- 
ary conditions of the problem for a crack-slit occupying the domain R \ F in a continuous 

material if the stress intensity factor is zero on the boundary of the domain Q\F in the 

last problem. This enables the class of solutions of problems on the equilibrium of cracks- 

slits in a continuous material to be used to construct solutions of problems on the equilibrium 

of cracks-slits with overlap domains. The boundary I' of the contact domains and the free 

surface in the problem for cracks-slits occupying the domain (.? is determined from the 

condition for seekinq the contour of the cracks-slit of the domain II \ F on which A, @lo, 
ss") = 0. Similarly for cavities the boundary r of the contact and free surfaces is determined 

by the conditionmof smooth interlocking of its surfaces 

lirn au, (x1, x,),'az 7 -&i (.rr", x2")'as, (d.,. x2) -, (Xl', rz') ,E r 

The approach proposed for solving problems on cracks and cavities with overlap domains 

is analogous to the approach in /lo, 11/ for the consideration of equilibrium cracks. The 

role of the adhesive force is played here by the compressive forces in the contact domain 

/11, 12/. 

3. We will examine the question of the uniqueness of the solution of boundary value 
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problem (l.l), (1.2). We assume that the solution of the mixed problem of elasticity theory 

is unique for a half-space with a line of separation of the boundary conditions r /13/. In 

this aase the solution of the problem about a cavity with overlap and opening domains subjected 

to a system of volume forces is unique. 

Proof. We will assume that two opening domains D, and D, exist with displacement jumps 

Q(l), t&J*) and state of stress Isik(l), oih(") subjected to a given system of volume forces. The 

domains D,, D, cannot coincide because of the assumed uniqueness of the mixed problem of 

elasticity theory with the separation boundary r. Consequently, their intersection D,:D,nD, 

is non-empty. By virtue of the conditions in the overlap domain (1.1) we have 

a$) < 0, (21, xz) E D, \ D,; ~$3~') 4 0, (21, 12) E D, \ D, (3.1) 

We subtract the quantities corresponding to the second and first states and consider the 
upper half-space. Taking account of (1.2)) (1.3), (3.1) in the plane zII= 0, we obtain 

us+ = up'- U(II, za)>O, 2% = - gg) 20, (11, 52) E DI (3.2) 
z'a+ = &) 3 --up I x33=0 , (xlrzz) E Do 

Ua* = - U~)-U(z1, .I$ <O, &a = $I < 0 , (+I, 4 E Dz 
VQ ==o, h 4 E Ra\G U & 
Xi, =Q -O(:k), u. = u(I) -UP) I 1 1 

The elastic energy for the state of stress zik for given stresses and displacements on 

the boundary is 

s 
Zmu,ns dz,dra< 0 

R’ 

which is impossible /13/. Therefore, IL~(~)=u~@) and the uniqueness of the solution is proved. 

An analogous assertion holds for a cracks-slit (u(zl, r:) = 0, (xl, x2) E G) with overlap and 

adhesion domains. 

Corollary 1. We consider a cavity (crack-slit) whose section by the plane x3 = 0 

occupies the domain 0 along which an overlap domain F is formed under the action of a system 

of volume forces. We now consider the very small cavity (crack-slit) subjected to the very 

same system of volume forces but with the overlap domain F,C F obtained because of the 

application of additional forces to the cavity (crack-slit) surfaces in F,. In this case 

there should be the subdomains Fr'C F,, where oz3 (zl,zz)), 0, (x1,z2)E F1' in the domain F,. If 

the domains FI' and D, have common boundary sections, then according to the asymptotic form 
(2.5) the solution is singular along these sections. 

4. Using the asymptotic form of the solution near the free surface, Corollary 1 and the 

property of positivity of the solution /l/, an assertion can be proved that enables estimates 

to be made of solutions of problems for cracks-slits and cavities with overlap domains. 

Assertion 1_ We assume that cavity (cracks-slit) surfaces subjected to compressive loads 

overlap along the part Fi(8Fr = rr) of the domain 9 which is a section through the cavity 
by the plane x3 = 0. We consider the very same cavity (cracks-slit) with the overlap domain 

F,, F,3 F1 obtained because of the application of additional forces in E'?. If the boundary 

rz has a point of tangency II with 1‘1, then the distribution of normal displacement jumps of 

the cavity surfaces in the second case has the form 1~'~ (2) = - (M (-L) - 11, 1 s I"?), d'- .I), /I, > 0 
in the domain Cl \ F, near the point of tangency M in the local SITZ coordinate system and 

the stress distribution ouy (x) = --U,.r':, Z> 0 is not singular (U(I) is the initial distance 

between the cavity surfaces, uu(z), IV!,(X) are displacement jump components of the cavity 
surfaces, respectively, for the overlap domains Fr and Fz, IL (x1, J?)'& 0, (x1, x2) ?C is a cracks- 

slit). 

Indeed, according to (2.5), under the assumption that B,-u when additional loads are 

applied to the cavity surfaces the displacement jump distribution LC~(I) has the form WY (I) = 

-(u(x)--BI1z/"~), z,<O, B,>,U in the local coordinate system. Since the displacement jump 
distribution %I (2) in the first case has the form Q(Z)= -(U(Z)+ A, / z/"~),z<o,A,< 0. then 

I ur, (4 I > I ql (2) I (4.1) 

We will show that under the assumptions made we can arrive at the opposite inequality. 
According to Corollary 1, subdomains F'..; F* on which oVl/(r,:):> 0 should exist in the overlap 
domain F2. We consider a displacement increment when the stresses in these subdomains ~'2 are 

removed. To do this, we will represent the problem in the form of a superposition of the orig- 
inal problem for the domain 61\ Ft and for the domain D, L Flp. There are no stresses in the 
domain D, while stresses with oppositve sign (tensile) are added in F2. According to the 
positivityproperty of the displacement jump /l/, we obtain that 6u,>O. rt3 grows, and (z,,z~)E 

us U F'!. Let F- F1, ra- r1 to increase D, because of the opening of the domain F'r. By the 
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uniqueness theorem Fg - FI, D,- D,. Since the displacement jump grows /I/ because of the 
application of tensile stresses, we obtain 1 u* (x) 1 > j U’l, (.r,i in the neiqhbourhood of the point 
of tangency M, which contradicts the oriqinal assumption (4.1). 

Assertion 1 permits the construction of estimates of solutions of problems on the 
equilibrium of cavities and cracks-slits with overlap domains and unknown boundary locations 

for these domains by using solutions of the corresponding problems for simpler qeometric 
cavities (slits). 

We consider the equilibrium of a cracks-slit occupying the domain 9 of the plane z3 -= 0 
in an infinite medium under the action of volume forces. The slit surfaces can overlap in a 
certain domain FC 52 not known in advance and can open in a domain D CI LX 

Assertion 2. If an opening domain i?, is formed on a cracks-slit Qr lying in Q, Rr CL? 

under the action of the same system of volume forces, then it lies within the domain fi, Drc 
u. 

We assume that the domain D, is not contained in D. According to Corollary 1, a part F'1 

on which oS3 (z,, x2) 2 0, (r,, zQ) E F II should beinthe domain F1. We expand the domain D, by adding 
the domain F'l byapplyinqtensile stresses in FIT. According to the congruence principle /l/, 

the displacement jump ug in the domain I), grows. Therefore, by expanding the opening domain 

0, different from D, we obtain a new opening domain which contradicts the uniqueness theorem. 
Therefore, it is necessary that D,cD. The assertion is proved. 

Assertion 2 formulated for the overlap domains is proved in /2/ on the basis of variational 

inequalities. 

We now prove two variational assertions for a crack-slit with an overlap domain, which 

are also a result of the asymptotic form obtained and the congruence theorem /l/. 

Assertion 3. The displacement jump L/.3 = us+ - us- obtained for the cracks-slits Q,CP 
with opening domains I), (u~(z~,x~)> 0, (2 ,.~~)~L),)reaches a maximum at each point of the opening 
domain 1) c Q in this field of external loads, outside of which the inequality c93(z1,z2) < 0, 

(.r, 1 X2) E !f \u, is satisfied, i.e., in the solution of the boundary value problem (l-l), 
(1.2) under the conditions U (X1, X,) = 0, Ibg (.r,, X?) > 0, (J,, Xc)\: $2. 

We will first show that the displacement jump reaches an extremum in the domain D under 

the condition uJ (+,. zn) .> 0, (zl. .Q)E ft. We vary the free surface domain D near the boundary 
of D. 

We consider the case when the domain D is expanded 8DeD. To determine the increment 
of the displacement jump u~(J~,z~\ during expansion of the domain D, we represent the boundary 

value problem (1.11, (1.2) as the superposition of two problems: the original for the domain D 

with a given system of volume forces and for the domain D (, 6D in which there is load on D, 
and the stresses 603$ which were on the section 60 in the continuous material but with 
opposite sign (superposition of the solutions), are appended on the section 6D. 

The asymptotic behaviour of the stresses near the boundary of the domain D outside of 

which oJzii (I,. .x?) Q 0, (z~, zpj G 51 \ D is determined by expression (2.5) , for A, = 0. (T (r) = U, .r g 0, u (2) == 

(J,Z;Z 0. and A, f 0. Therefore, upon expansion of the domain D the stresses are l&J,& (2,. s*) ;a 

0. (51, 12) E 6D, and according to /l/ the displacement jump is 611~ < o for any point (.zl, z2) ED U 6D. 

The inequality obtained uj= 6u,g 0,(x1, I~)E~D corresponds to penetration of one crack- 

slit surface into another in the neiqhbourhood of the boundary ofthedomain 4, which is 

impossible. Therefore, expansion ofthedomain D in the overlap domain is not allowable because 

of the constraint ~1~ (I,, I*) > 0, (x1, zi) E $1. 

We consider the case of shrinkage OF the domain D,hDcD. It is here necessary to apply 

forces attracting one crack surface to the other, i.e., &J,:,~>II,, in the section SD, and 

according to /l/, 6u,<O at any point of the domain D. Therefore, the displacement jump does 

not grow when the free boundary varies. We will show that it reaches the maximum value at 
each point of the domain D outside of which o,f (-1,.z2) < I), (z,, x2) E Q \ D. 

We consider different opening domains D,cQ, heing formed in the cracks-slits 9, CQ. 

According to Assertion 2, all these domains are contained in D. According to Corollary 1, along 

the boundaries of these domains stress singularity sections exist that differ from the boundary 

of the domain Sl. Expanding the domain D, to the domain D along these sections according to 

the congruence theorem /l/ we find that the displacement jump u S grows at each point of the 

domain D,, and, therefore, reaches a maximum upon coincidence with D. 

Therefore, the displacement jump u~(z,,z,) determined in a set of opening domains D,fu,(q, 

4 z 07 fs, 4 = 4) reaches a maximum in this load field in the domain DCQ outside of which 

03, (xtr .=z) d 0, f% 5~) E D. Assertion 3 is proved. 
A direct corollary of Assertion 3 is the attainment of a maximum of the volume of the 

crack-slit opening for the domain D C B outside which the inequality c& (xl, x2)< 0, (Q, $1 E 
Q\D is satisfied under-the ccnditicn IL3 (I,, X2) > 0, (51, xrL) E Q, i.e., in solutions of the 

boundary value Froblem (1.1) /14/. 

We considerthechangeinelasticenergyduringvariationofthe loads andthe free surface domain 
D in a crack-slit Q. We perform the analysis fr,r a body of finite volume V" containing 

the crack 9 to whose surface S the given loads are applied. 
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Let the stress and strain in state one be (Tik(l' and Ebb@), and in state two ciL'>) and ~~(2). 

The Change in the elastic has the form 1131 

hW c-1_ (&?&! 
2 .c 

- &\',!)dV"= wz - IV1 (4.2) 
v 

where I%'* is the energy in the i-th state, i = 1, 2. We use the Betti theorem /13/ 

7 (&$! - c$&) dV"= 0 
t 

Appending this relationship to the right side of (4.2), we obtain after changing to a 

surface integral 

where C is the surface enclosing the volume T/", and Ti is the vector of the forces applied 

to the surface Z. On the other hand, according to the Clapeyron theorem 

Al+'= I2 [Ti (u!" - u:")] - ZoUa~ [~~~*b(223)n~] + ID [u~"n:;'ns] 

Eliminating the integral over 2 from the last two relationships, we obtain 

The volume V" and the surface Z are not in the final result (4.3), which enables it 

to be used even to compute the energy changes of an infinite space. The relationship (4.3) 

enables the change in elastic energy to be analysed as a function of the change in stress 

and dimensions of the plane domain D. 
We apply the result obtained to the problem of the equilibrium of a crack-slit Q withan 

overlap domain P and a free surface D. We will examine the change in elastic energy during 
variation of theoverlapzone boundaries intheboundary value problem (1.2), (1.3). In this 

case, according to (3.3) we obtain 

(4.4) 

The two components in the expression for the elastic energy increment (4.4) correspond 

to expansion and shrinkage of the domain D. Indeed, if the domain D is expanded, then 

u,(l) (x,, x2)= 0, (51, x0) E 6D and the second component in (4.4) must be excluded. If the domain 
D is shrunk, then ui@) (I~, x2) = 0, (r,,x,)~ 6D and the first component is eliminated. Denoting 
the displacement of the contour of the domain D in the normal direction by 61, (x1,x2) and 

assuming that the contour is smooth, we write the relationship (3.4) in the local XYZ 

coordinate system (the z axis is in the domain D and is directed along the normal to the 

contour, z<O corresponds to the domain D, and dl is an element of the arc of the contour) 

We will calculate the energy change during variation of the domain D. To do this we 
substitute the asymptotic representation of the stresses and the displacement jump (2.5) in 

the local coordinate system in the neighbourhood of the boundary of the domain D 

(4.6) 

We investigate (4.6) during the passage from different states. If Al(') # 0, ‘4P # 0 , 
and therefore, Arc') > O,Al@) >0 for the cracks-slit, then the change in elastic energy is 
determined by the first approximation in 6L 

AW=T 4 ii;"A:"fiLdl 
r 
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i.e., the elastic energy grows as the crack expands: SW> 0. In the limit A,(z) -_, A,@) = A, 
as &I,-> 0. the expression for the change in elastic energy agrees with the Irwin formula if 

we set A, =m k','f/s where K, is the stress intensity factor /0, 9,'. 
Therefore, the elastic energy grows monotonically as the domain outside of which the 

constraint (533t (r,, x,)< 0 is not satisfied is varied. 
According to the assertion proved, the domains D, fox which u,> 0, (x,, rJ.%D, lie in 

If, D,cD and have sections of the boundary along which the stresses are singular, and do not 
agree with the boundaries of 9. By expanding the domain D along these boundaries, we obtain 
that the elastic energy grows according to the preceding, and reaches a maximum on the 
boundary of the domain D on which A, =- 0. According to the asymptotic form (2.5) and Assertion 
3, for SL< 0, Al@) 60, A%(“<@, Al(l) := 0. Substituting the relationship (2.5) for the coefficients 
of the expansion into (4.6), we obtain that ?iW< 0 for 6L(O, i.e., w decreases. The 
variation of 6Lj 0 for the domain D is not allowable because of the constraint 113 (r,, rZ) 7-, 

0, (x1, rt) tz a. 
The following can therefore be formulated 

Assertion 4. The elastic energy functional 

W IL; - + 5 ugz3n3 ds 

D2 

calculated in the set of domains D, i= ‘ll on which ug 2 0, (~1,.~2)ED, in a given external load 
field reaches its maximum in the domain DC 52 outside which the inequality %3f (x,, r2) < 
0, (x1, I*) :E s1 \ D is satisfied under the condition 16~ (z,, z2) > 0, (zl,zs)G 9. 

Assertion 4 has been formulated /2/ and proved by other means. The proof of Assertion 4 
on the basis of the congruence theorem and the kind of asymptotic form set up above for 
solving the problem on the equilibrium of cracks near the boundary of the overlap zone of its 
surfaces simultaneously sets up the equivalence of the approaches to the solution of problems 
of a crack-slit with an overlap domain by a variational method and by constructing a non- 
singular solution. The non-singularity of the solution on the boundary of the free surface 
and contact domains follows from the requirement for the elastic energy functional to reach a 
maximum, and the maximum of the elastic energy follows from the requirement of non-singularity 
of the solution, 
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